1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
package parser
import (
"github.com/gnolang/parscan/scanner"
)
const (
Stmt = 1 << iota
ExprSep
Call
Index
Decl
MultiOp
)
type NodeSpec struct {
Kind // AST node kind
Flags uint // composable properties used for AST generation
Order int // operator precedence order
}
type Parser struct {
*scanner.Scanner
Spec map[string]NodeSpec
}
func (p *Parser) Parse(src string, ctx *Node) (nodes []*Node, err error) {
tokens, err := p.Scan(src)
if err != nil {
return
}
return p.ParseTokens(tokens, ctx)
}
func (p *Parser) ParseTokens(tokens []*scanner.Token, ctx *Node) (nodes []*Node, err error) {
// TODO: error handling.
var root *Node // current root node
var expr *Node // current expression root node
var prev, c *Node // previous and current nodes
var lce *Node // last complete expression node
unaryOp := map[*Node]bool{} // unaryOp indicates if a node is an unary operator.
prevToken := map[*Node]*scanner.Token{}
for i, t := range tokens {
prev = c
c = &Node{
Token: t,
Kind: p.Spec[t.Name()].Kind,
}
if i > 0 {
prevToken[c] = tokens[i-1]
}
if c.Kind == Comment {
continue
}
if t.IsOperator() && (i == 0 || tokens[i-1].IsOperator()) {
unaryOp[c] = true
}
if c.Kind == Undefined {
switch t.Kind() {
case scanner.Number:
c.Kind = LiteralNumber
case scanner.Identifier:
c.Kind = Ident
}
}
if root == nil {
if p.isSep(c) {
continue
}
lce = nil
root = c
if p.isExpr(c) {
expr = c
}
continue
}
if t.IsBlock() {
if expr != nil {
if p.hasProp(c, ExprSep) && p.isExprSep(root) {
// A bracket block may end a previous expression.
root.Child = append(root.Child, expr)
expr = nil
} else if p.hasProp(c, Call) && !p.hasProp(root, Decl) && p.canCallToken(tokens[i-1]) {
// Handle (possibly nested) call expressions.
if lce == nil || lce != expr { // TODO(marc): not general, fix it.
lce = prev
}
lce.Child = []*Node{{Token: lce.Token, Child: lce.Child, Kind: lce.Kind}}
lce.Token = scanner.NewToken("Call", c.Pos())
lce.Kind = ExprCall
}
}
tcont := t.Content()
s := tcont[t.Start() : len(tcont)-t.End()]
n2, err := p.Parse(s, c)
if err != nil {
return nil, err
}
c.Child = append(c.Child, n2...)
}
// Process the end of an expression or a statement.
if t.IsSeparator() {
if t.Content() == "," && ctx.Kind != BlockParen {
// ignore comma separator in field lists
} else if expr != nil && p.hasProp(root, Stmt) {
root.Child = append(root.Child, expr)
if p.hasProp(expr, ExprSep) {
nodes = append(nodes, root)
root = nil
}
expr = nil
} else {
if expr != nil {
root = expr
}
nodes = append(nodes, root)
expr = nil
root = nil
}
continue
}
// We assume from now that current node is part of an expression subtree.
if expr == nil {
if p.isStatement(root) {
expr = c
continue
}
expr = root
}
// Update the expression subtree according to binary operator precedence rules.
// - operators are binary infix by default.
// - if an operator follows another, then it's unary prefix.
// - if an expression starts by an operator, then it's unary prefix.
// - non operator nodes have a default precedence of 0.
// TODO: handle postfix unary (i.e. ++) and ternary (i.e. ?:)
//
ep := p.Spec[expr.Content()].Order
cp := p.Spec[c.Content()].Order
a := expr
if unaryOp[c] {
cp = 0
}
if cp != 0 {
if cp > ep {
// Perform an operator permutation at expr root as required by precedence.
// TODO(marc): maybe it can be generalized in below else branch.
expr, c = c, expr
a = expr // Temporary ancestor: its children may have to be permuted.
} else {
// Findout if an operator permutation is necessary in subtree.
c1 := expr
for {
a = c1
if unaryOp[c1] {
c1, c = c, c1
a = c1
if c == expr {
expr = a
}
break
}
if len(c1.Child) < 2 {
break
}
c1 = c1.Child[1]
if !c1.IsOperator() || unaryOp[c1] || cp > p.Spec[c1.Content()].Order {
break
}
}
// No permutation occured. Append current to last visited ancestor.
if len(a.Child) > 1 {
a.Child = a.Child[:1]
c.Child = append(c.Child, c1)
}
}
} else if ep != 0 {
for len(a.Child) > 1 {
a = a.Child[1]
}
}
a.Child = append(a.Child, c)
if p.hasProp(a, Call) {
lce = a
}
}
if root != nil && p.isStatement(root) {
if expr != nil {
root.Child = append(root.Child, expr)
}
} else if expr != nil {
root = expr
}
if root != nil {
// /*
if p.hasProp(root, MultiOp) {
for {
if !p.fixMultiOp(root, prevToken) {
break
}
}
}
// */
nodes = append(nodes, root)
}
return nodes, err
}
func (p *Parser) fixMultiOp(root *Node, prevToken map[*Node]*scanner.Token) bool {
for i, c := range root.Child {
for j, cc := range c.Child {
if pt := prevToken[cc]; pt != nil && pt.Content() == "," {
c.RemoveChild(j)
root.InsertChild(cc, i)
return true
}
}
}
return false
}
func (p *Parser) hasProp(n *Node, prop uint) bool { return p.Spec[n.Name()].Flags&prop != 0 }
func (p *Parser) isStatement(n *Node) bool { return p.Spec[n.Content()].Flags&Stmt != 0 }
func (p *Parser) isExprSep(n *Node) bool { return p.Spec[n.Content()].Flags&ExprSep != 0 }
func (p *Parser) isExpr(n *Node) bool { return !p.isStatement(n) && !p.isExprSep(n) }
func (p *Parser) isSep(n *Node) bool { return n.Token.Kind() == scanner.Separator }
func (p *Parser) IsBlock(n *Node) bool { return n.Token.Kind() == scanner.Block }
func (p *Parser) precedenceToken(t *scanner.Token) int {
s := t.Content()
if l := t.Start(); l > 0 {
s = s[:l]
}
return p.Spec[s].Order
}
func (p *Parser) canCallToken(t *scanner.Token) bool {
return p.precedenceToken(t) == 0 || p.Spec[t.Name()].Flags&Call != 0
}
|